Extrasynaptic volume transmission and diffusion parameters of the extracellular space.
نویسنده
چکیده
Extrasynaptic communication between neurons or neurons and glia is mediated by the diffusion of neuroactive substances in the volume of the extracellular space (ECS). The size and irregular geometry of the diffusion channels in the ECS substantially differ not only around individual cells but also in different CNS regions and thus affect and direct the movement of various neuroactive substances in the ECS. Diffusion in the CNS is therefore not only inhomogeneous, but often also anisotropic. The diffusion parameters in adult mammals (including humans), ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda(2)=free/apparent diffusion coefficient), are typically 0.20-0.25 and 1.5-1.6, respectively, and as such hinder the diffusion of neuroactive substances and water. These diffusion parameters modulate neuronal signaling, neuron-glia communication and extrasynaptic "volume" transmission. A significant decrease in ECS volume fraction and an increase in diffusion barriers (tortuosity) occur during neuronal activity and pathological states. The changes are often related to cell swelling, cell loss, astrogliosis, the rearrangement of neuronal and astrocytic processes and changes in the extracellular matrix. They are also altered during physiological states such as development, lactation and aging. Plastic changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes toward synapses, glutamate or GABA "spillover" and synaptic crosstalk. The various changes in tissue diffusivity occurring during many pathological states are important for diagnosis, drug delivery and treatment.
منابع مشابه
Extracellular space diffusion and extrasynaptic transmission.
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction alpha (alpha=ECS volume/total tissue volume), 2. tortuosity lambda (lamb...
متن کاملGlial cells and volume transmission in the CNS.
Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically d...
متن کاملChanges in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease.
Diffusion parameters of the extracellular space (ECS) are changed in many brain pathologies, disturbing synaptic as well as extrasynaptic "volume" transmission, which is based on the diffusion of neuroactive substances in the ECS. Amyloid deposition, neuronal loss, and disturbed synaptic transmission are considered to be the main causes of Alzheimer's disease dementia. We studied diffusion para...
متن کاملAstrocytes and extracellular matrix in extrasynaptic volume transmission.
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and th...
متن کاملLearning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus.
The extracellular space (ECS) is the microenvironment of the nerve cells and an important communication channel, allowing for long-distance extrasynaptic communication between cells. Changes in ECS size, geometry, and composition have been reported in diverse (patho)physiological states, including aging. In the present study, real-time tetramethylammonium (TMA+) iontophoresis was used to quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 129 4 شماره
صفحات -
تاریخ انتشار 2004